Identification of an alternative nucleoside triphosphate: 5'-deoxyadenosylcobinamide phosphate nucleotidyltransferase in Methanobacterium thermoautotrophicum delta H.

نویسندگان

  • M G Thomas
  • J C Escalante-Semerena
چکیده

Computer analysis of the archaeal genome databases failed to identify orthologues of all of the bacterial cobamide biosynthetic enzymes. Of particular interest was the lack of an orthologue of the bifunctional nucleoside triphosphate (NTP):5'-deoxyadenosylcobinamide kinase/GTP:adenosylcobinamide-phosphate guanylyltransferase enzyme (CobU in Salmonella enterica). This paper reports the identification of an archaeal gene encoding a new nucleotidyltransferase, which is proposed to be the nonorthologous replacement of the S. enterica cobU gene. The gene encoding this nucleotidyltransferase was identified using comparative genome analysis of the sequenced archaeal genomes. Orthologues of the gene encoding this activity are limited at present to members of the domain Archaea. The corresponding ORF open reading frame from Methanobacterium thermoautotrophicum Delta H (MTH1152; referred to as cobY) was amplified and cloned, and the CobY protein was expressed and purified from Escherichia coli as a hexahistidine-tagged fusion protein. This enzyme had GTP:adenosylcobinamide-phosphate guanylyltransferase activity but did not have the NTP:AdoCbi kinase activity associated with the CobU enzyme of S. enterica. NTP:adenosylcobinamide kinase activity was not detected in M. thermoautotrophicum Delta H cell extract, suggesting that this organism may not have this activity. The cobY gene complemented a cobU mutant of S. enterica grown under anaerobic conditions where growth of the cell depended on de novo adenosylcobalamin biosynthesis. cobY, however, failed to restore adenosylcobalamin biosynthesis in cobU mutants grown under aerobic conditions where de novo synthesis of this coenzyme was blocked, and growth of the cell depended on the assimilation of exogenous cobinamide. These data strongly support the proposal that the relevant cobinamide intermediates during de novo adenosylcobalamin biosynthesis are adenosylcobinamide-phosphate and adenosylcobinamide-GDP, not adenosylcobinamide. Therefore, NTP:adenosylcobinamide kinase activity is not required for de novo cobamide biosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cobY gene of the archaeon Halobacterium sp. strain NRC-1 is required for de novo cobamide synthesis.

Genetic and nutritional analyses of mutants of the extremely halophilic archaeon Halobacterium sp. strain NRC-1 showed that open reading frame (ORF) Vng1581C encodes a protein with nucleoside triphosphate:adenosylcobinamide-phosphate nucleotidyltransferase enzyme activity. This activity was previously associated with the cobY gene of the methanogenic archaeon Methanobacterium thermoautotrophicu...

متن کامل

D-erythro-neopterin biosynthesis in the methanogenic archaea Methanococcus thermophila and Methanobacterium thermoautotrophicum deltaH.

The steps in the biosynthetic transformation of GTP to 7,8-dihydro-D-erythro-neopterin (H2neopterin), the precursor to the modified folates found in the methanogenic archaea, has been elucidated for the first time in two members of the domain Archaea. In Methanococcus thermophila and Methanobacterium thermoautotrophicum deltaH, it has been demonstrated that H2neopterin 2':3'-cyclic phosphate is...

متن کامل

Chemiosmotic coupling in Methanobacterium thermoautotrophicum: hydrogen-dependent adenosine 5'-triphosphate synthesis by subcellular particles.

Hydrogenase and the adenosine 5'-triphosphate (ATP) synthetase complex, two enzymes essential in ATP generation in Methanobacterium thermoautotrophicum, were localized in internal membrane systems as shown by cytochemical techniques. Membrane vesicles from this organism possessed hydrogenase and adenosine triphosphatase (ATPase) activity and synthesized ATP driven by hydrogen oxidation or a pot...

متن کامل

Light sensitivity of methanogenic archaebacteria.

Representatives of four families of methanogenic archaebacteria (archaea), Methanobacterium thermoautotrophicum delta H, Methanobacterium thermoautotrophicum Marburg, Methanosarcina acetivorans, Methanococcus voltae, and Methanomicrobium mobile, were found to be light sensitive. The facultative anaerobic eubacteria Escherichia coli and Salmonella typhimurium, however, were tolerant of light whe...

متن کامل

Assimilatory reduction of sulfate and sulfite by methanogenic bacteria.

A variety of sulfur-containing compounds were investigated for use as medium reductants and sulfur sources for growth of four methanogenic bacteria. Sulfide (1 to 2 mM) served all methanogens investigated well. Methanococcus thermolithotrophicus and Methanobacterium thermoautotrophicum Marburg and delta H grew well with S0, SO3(2-), or thiosulfate as the sole sulfur source. Only Methanococcus t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 182 15  شماره 

صفحات  -

تاریخ انتشار 2000